arduino/libraries/Firmata/examples/StandardFirmataEthernetPlus/StandardFirmataEthernetPlus...

1199 lines
39 KiB
Arduino
Raw Normal View History

/*
Firmata is a generic protocol for communicating with microcontrollers
from software on a host computer. It is intended to work with
any host computer software package.
To download a host software package, please clink on the following link
to open the list of Firmata client libraries your default browser.
https://github.com/firmata/arduino#firmata-client-libraries
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
Copyright (C) 2010-2011 Paul Stoffregen. All rights reserved.
Copyright (C) 2009 Shigeru Kobayashi. All rights reserved.
Copyright (C) 2009-2015 Jeff Hoefs. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
Last updated by Jeff Hoefs: December 26th, 2015
*/
/*
README
StandardFirmataEthernetPlus adds additional features that may exceed the Flash and
RAM sizes of Arduino boards such as ATMega328p (Uno) and ATMega32u4
(Leonardo, Micro, Yun, etc). It is best to use StandardFirmataPlus with a board that
has > 32k Flash and > 3k RAM such as: Arduino Mega, Arduino Due, Teensy 3.0/3.1/3.2, etc.
This sketch consumes too much Flash and RAM to run reliably on an
Arduino Leonardo, Yun, ATMega32u4-based board. Use StandardFirmataEthernet.ino instead
for those boards and other boards that do not meet the Flash and RAM requirements.
To use StandardFirmataEthernet you will need to have one of the following
boards or shields:
- Arduino Ethernet shield (or clone)
- Arduino Ethernet board (or clone)
Follow the instructions in the NETWORK CONFIGURATION section below to
configure your particular hardware.
NOTE: If you are using an Arduino Ethernet shield you cannot use the following pins on
the following boards. Firmata will ignore any requests to use these pins:
- Arduino Mega: (D4, D10, D50, D51, D52, D53)
- Arduino Due: (D4, D10)
- Arduino Uno or other ATMega328p boards: (D4, D10, D11, D12, D13)
If you are using an ArduinoEthernet board, the following pins cannot be used (same as Uno):
- D4, D10, D11, D12, D13
*/
#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>
// SoftwareSerial is currently only supported for AVR-based boards and the Arduino 101
// The third condition checks if the IDE is in the 1.0.x series, if so, include SoftwareSerial
// since it should be available to all boards in that IDE.
#if defined(ARDUINO_ARCH_AVR) || defined(ARDUINO_ARCH_ARC32) || (ARDUINO >= 100 && ARDUINO < 10500)
#include <SoftwareSerial.h>
#endif
#include "utility/serialUtils.h"
//#define SERIAL_DEBUG
#include "utility/firmataDebug.h"
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define I2C_END_TX_MASK B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED -1
// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL 1
/*==============================================================================
* NETWORK CONFIGURATION
*
* You must configure your particular hardware. Follow the steps below.
*============================================================================*/
#include <SPI.h>
#include <Ethernet.h>
// STEP 1 [REQUIRED for all boards and shields]
// replace with IP of the server you want to connect to, comment out if using 'remote_host'
#define remote_ip IPAddress(10, 0, 0, 3)
// *** REMOTE HOST IS NOT YET WORKING ***
// replace with hostname of server you want to connect to, comment out if using 'remote_ip'
// #define remote_host "server.local"
// STEP 2 [REQUIRED]
// Replace with the port that your server is listening on
#define remote_port 3030
// STEP 3 [REQUIRED if not using DHCP]
// Replace with your board or ethernet shield's IP address
// Comment out if you want to use DHCP
#define local_ip IPAddress(10, 0, 0, 15)
// STEP 4 [REQUIRED]
// replace with ethernet shield mac. Must be unique for your network
const byte mac[] = {0x90, 0xA2, 0xDA, 0x00, 0x53, 0xE5};
#if defined remote_ip && defined remote_host
#error "cannot define both remote_ip and remote_host at the same time!"
#endif
/*==============================================================================
* GLOBAL VARIABLES
*============================================================================*/
/* network */
#include "utility/EthernetClientStream.h"
EthernetClient client;
#if defined remote_ip && !defined remote_host
#ifdef local_ip
EthernetClientStream stream(client, local_ip, remote_ip, NULL, remote_port);
#else
EthernetClientStream stream(client, IPAddress(0, 0, 0, 0), remote_ip, NULL, remote_port);
#endif
#endif
#if !defined remote_ip && defined remote_host
#ifdef local_ip
EthernetClientStream stream(client, local_ip, IPAddress(0, 0, 0, 0), remote_host, remote_port);
#else
EthernetClientStream stream(client, IPAddress(0, 0, 0, 0), IPAddress(0, 0, 0, 0), remote_host, remote_port);
#endif
#endif
/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting
/* digital input ports */
byte reportPINs[TOTAL_PORTS]; // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS]; // previous 8 bits sent
/* pins configuration */
byte pinConfig[TOTAL_PINS]; // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS]; // any value that has been written
/* timer variables */
unsigned long currentMillis; // store the current value from millis()
unsigned long previousMillis; // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to sample analog inputs (in ms)
/* serial message */
Stream *swSerial0 = NULL;
Stream *swSerial1 = NULL;
Stream *swSerial2 = NULL;
Stream *swSerial3 = NULL;
byte reportSerial[MAX_SERIAL_PORTS];
int serialBytesToRead[SERIAL_READ_ARR_LEN];
signed char serialIndex;
/* i2c data */
struct i2c_device_info {
byte addr;
int reg;
byte bytes;
byte stopTX;
};
/* for i2c read continuous mode */
i2c_device_info query[I2C_MAX_QUERIES];
byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;
Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;
boolean isResetting = false;
/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
Wire.write((byte)data);
#else
Wire.send(data);
#endif
}
byte wireRead(void)
{
#if ARDUINO >= 100
return Wire.read();
#else
return Wire.receive();
#endif
}
/*==============================================================================
* FUNCTIONS
*============================================================================*/
// get a pointer to the serial port associated with the specified port id
Stream* getPortFromId(byte portId)
{
switch (portId) {
case HW_SERIAL0:
// block use of Serial (typically pins 0 and 1) until ability to reclaim Serial is implemented
//return &Serial;
return NULL;
#if defined(PIN_SERIAL1_RX)
case HW_SERIAL1:
return &Serial1;
#endif
#if defined(PIN_SERIAL2_RX)
case HW_SERIAL2:
return &Serial2;
#endif
#if defined(PIN_SERIAL3_RX)
case HW_SERIAL3:
return &Serial3;
#endif
#if defined(SoftwareSerial_h)
case SW_SERIAL0:
if (swSerial0 != NULL) {
// instances of SoftwareSerial are already pointers so simply return the instance
return swSerial0;
}
break;
case SW_SERIAL1:
if (swSerial1 != NULL) {
return swSerial1;
}
break;
case SW_SERIAL2:
if (swSerial2 != NULL) {
return swSerial2;
}
break;
case SW_SERIAL3:
if (swSerial3 != NULL) {
return swSerial3;
}
break;
#endif
}
return NULL;
}
// Check serial ports that have READ_CONTINUOUS mode set and relay any data
// for each port to the device attached to that port.
void checkSerial()
{
byte portId, serialData;
int bytesToRead = 0;
int numBytesToRead = 0;
Stream* serialPort;
if (serialIndex > -1) {
// loop through all reporting (READ_CONTINUOUS) serial ports
for (byte i = 0; i < serialIndex + 1; i++) {
portId = reportSerial[i];
bytesToRead = serialBytesToRead[portId];
serialPort = getPortFromId(portId);
if (serialPort == NULL) {
continue;
}
#if defined(SoftwareSerial_h)
// only the SoftwareSerial port that is "listening" can read data
if (portId > 7 && !((SoftwareSerial*)serialPort)->isListening()) {
continue;
}
#endif
if (serialPort->available() > 0) {
Firmata.write(START_SYSEX);
Firmata.write(SERIAL_MESSAGE);
Firmata.write(SERIAL_REPLY | portId);
if (bytesToRead == 0 || (serialPort->available() <= bytesToRead)) {
numBytesToRead = serialPort->available();
} else {
numBytesToRead = bytesToRead;
}
// relay serial data to the serial device
while (numBytesToRead > 0) {
serialData = serialPort->read();
Firmata.write(serialData & 0x7F);
Firmata.write((serialData >> 7) & 0x7F);
numBytesToRead--;
}
Firmata.write(END_SYSEX);
}
}
}
}
void attachServo(byte pin, int minPulse, int maxPulse)
{
if (servoCount < MAX_SERVOS) {
// reuse indexes of detached servos until all have been reallocated
if (detachedServoCount > 0) {
servoPinMap[pin] = detachedServos[detachedServoCount - 1];
if (detachedServoCount > 0) detachedServoCount--;
} else {
servoPinMap[pin] = servoCount;
servoCount++;
}
if (minPulse > 0 && maxPulse > 0) {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
} else {
servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
}
} else {
Firmata.sendString("Max servos attached");
}
}
void detachServo(byte pin)
{
servos[servoPinMap[pin]].detach();
// if we're detaching the last servo, decrement the count
// otherwise store the index of the detached servo
if (servoPinMap[pin] == servoCount && servoCount > 0) {
servoCount--;
} else if (servoCount > 0) {
// keep track of detached servos because we want to reuse their indexes
// before incrementing the count of attached servos
detachedServoCount++;
detachedServos[detachedServoCount - 1] = servoPinMap[pin];
}
servoPinMap[pin] = 255;
}
void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
// allow I2C requests that don't require a register read
// for example, some devices using an interrupt pin to signify new data available
// do not always require the register read so upon interrupt you call Wire.requestFrom()
if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
Wire.beginTransmission(address);
wireWrite((byte)theRegister);
Wire.endTransmission(stopTX); // default = true
// do not set a value of 0
if (i2cReadDelayTime > 0) {
// delay is necessary for some devices such as WiiNunchuck
delayMicroseconds(i2cReadDelayTime);
}
} else {
theRegister = 0; // fill the register with a dummy value
}
Wire.requestFrom(address, numBytes); // all bytes are returned in requestFrom
// check to be sure correct number of bytes were returned by slave
if (numBytes < Wire.available()) {
Firmata.sendString("I2C: Too many bytes received");
} else if (numBytes > Wire.available()) {
Firmata.sendString("I2C: Too few bytes received");
}
i2cRxData[0] = address;
i2cRxData[1] = theRegister;
for (int i = 0; i < numBytes && Wire.available(); i++) {
i2cRxData[2 + i] = wireRead();
}
// send slave address, register and received bytes
Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}
void outputPort(byte portNumber, byte portValue, byte forceSend)
{
// pins not configured as INPUT are cleared to zeros
portValue = portValue & portConfigInputs[portNumber];
// only send if the value is different than previously sent
if (forceSend || previousPINs[portNumber] != portValue) {
Firmata.sendDigitalPort(portNumber, portValue);
previousPINs[portNumber] = portValue;
}
}
/* -----------------------------------------------------------------------------
* check all the active digital inputs for change of state, then add any events
* to the Stream output queue using Stream.write() */
void checkDigitalInputs(void)
{
/* Using non-looping code allows constants to be given to readPort().
* The compiler will apply substantial optimizations if the inputs
* to readPort() are compile-time constants. */
if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}
// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
* two bit-arrays that track Digital I/O and PWM status
*/
void setPinModeCallback(byte pin, int mode)
{
if (pinConfig[pin] == PIN_MODE_IGNORE)
return;
if (pinConfig[pin] == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
// disable i2c so pins can be used for other functions
// the following if statements should reconfigure the pins properly
disableI2CPins();
}
if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
}
if (IS_PIN_ANALOG(pin)) {
reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting
}
if (IS_PIN_DIGITAL(pin)) {
if (mode == INPUT || mode == PIN_MODE_PULLUP) {
portConfigInputs[pin / 8] |= (1 << (pin & 7));
} else {
portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
}
}
pinState[pin] = 0;
switch (mode) {
case PIN_MODE_ANALOG:
if (IS_PIN_ANALOG(pin)) {
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
}
pinConfig[pin] = PIN_MODE_ANALOG;
}
break;
case INPUT:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
#if ARDUINO <= 100
// deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
pinConfig[pin] = INPUT;
}
break;
case PIN_MODE_PULLUP:
if (IS_PIN_DIGITAL(pin)) {
pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
pinConfig[pin] = PIN_MODE_PULLUP;
pinState[pin] = 1;
}
break;
case OUTPUT:
if (IS_PIN_DIGITAL(pin)) {
digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable PWM
pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
pinConfig[pin] = OUTPUT;
}
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin)) {
pinMode(PIN_TO_PWM(pin), OUTPUT);
analogWrite(PIN_TO_PWM(pin), 0);
pinConfig[pin] = PIN_MODE_PWM;
}
break;
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin)) {
pinConfig[pin] = PIN_MODE_SERVO;
if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
// pass -1 for min and max pulse values to use default values set
// by Servo library
attachServo(pin, -1, -1);
}
}
break;
case PIN_MODE_I2C:
if (IS_PIN_I2C(pin)) {
// mark the pin as i2c
// the user must call I2C_CONFIG to enable I2C for a device
pinConfig[pin] = PIN_MODE_I2C;
}
break;
default:
Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
}
// TODO: save status to EEPROM here, if changed
}
/*
* Sets the value of an individual pin. Useful if you want to set a pin value but
* are not tracking the digital port state.
* Can only be used on pins configured as OUTPUT.
* Cannot be used to enable pull-ups on Digital INPUT pins.
*/
void setPinValueCallback(byte pin, int value)
{
if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
if (pinConfig[pin] == OUTPUT) {
pinState[pin] = value;
digitalWrite(PIN_TO_DIGITAL(pin), value);
}
}
}
void analogWriteCallback(byte pin, int value)
{
if (pin < TOTAL_PINS) {
switch (pinConfig[pin]) {
case PIN_MODE_SERVO:
if (IS_PIN_DIGITAL(pin))
servos[servoPinMap[pin]].write(value);
pinState[pin] = value;
break;
case PIN_MODE_PWM:
if (IS_PIN_PWM(pin))
analogWrite(PIN_TO_PWM(pin), value);
pinState[pin] = value;
break;
}
}
}
void digitalWriteCallback(byte port, int value)
{
byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;
if (port < TOTAL_PORTS) {
// create a mask of the pins on this port that are writable.
lastPin = port * 8 + 8;
if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
for (pin = port * 8; pin < lastPin; pin++) {
// do not disturb non-digital pins (eg, Rx & Tx)
if (IS_PIN_DIGITAL(pin)) {
// do not touch pins in PWM, ANALOG, SERVO or other modes
if (pinConfig[pin] == OUTPUT || pinConfig[pin] == INPUT) {
pinValue = ((byte)value & mask) ? 1 : 0;
if (pinConfig[pin] == OUTPUT) {
pinWriteMask |= mask;
} else if (pinConfig[pin] == INPUT && pinValue == 1 && pinState[pin] != 1) {
// only handle INPUT here for backwards compatibility
#if ARDUINO > 100
pinMode(pin, INPUT_PULLUP);
#else
// only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
pinWriteMask |= mask;
#endif
}
pinState[pin] = pinValue;
}
}
mask = mask << 1;
}
writePort(port, (byte)value, pinWriteMask);
}
}
// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
*/
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
if (analogPin < TOTAL_ANALOG_PINS) {
if (value == 0) {
analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
} else {
analogInputsToReport = analogInputsToReport | (1 << analogPin);
// prevent during system reset or all analog pin values will be reported
// which may report noise for unconnected analog pins
if (!isResetting) {
// Send pin value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// TODO: save status to EEPROM here, if changed
}
void reportDigitalCallback(byte port, int value)
{
if (port < TOTAL_PORTS) {
reportPINs[port] = (byte)value;
// Send port value immediately. This is helpful when connected via
// ethernet, wi-fi or bluetooth so pin states can be known upon
// reconnecting.
if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
}
// do not disable analog reporting on these 8 pins, to allow some
// pins used for digital, others analog. Instead, allow both types
// of reporting to be enabled, but check if the pin is configured
// as analog when sampling the analog inputs. Likewise, while
// scanning digital pins, portConfigInputs will mask off values from any
// pins configured as analog
}
/*==============================================================================
* SYSEX-BASED commands
*============================================================================*/
void sysexCallback(byte command, byte argc, byte *argv)
{
byte mode;
byte stopTX;
byte slaveAddress;
byte data;
int slaveRegister;
unsigned int delayTime;
switch (command) {
case I2C_REQUEST:
mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
Firmata.sendString("10-bit addressing not supported");
return;
}
else {
slaveAddress = argv[0];
}
// need to invert the logic here since 0 will be default for client
// libraries that have not updated to add support for restart tx
if (argv[1] & I2C_END_TX_MASK) {
stopTX = I2C_RESTART_TX;
}
else {
stopTX = I2C_STOP_TX; // default
}
switch (mode) {
case I2C_WRITE:
Wire.beginTransmission(slaveAddress);
for (byte i = 2; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
wireWrite(data);
}
Wire.endTransmission();
delayMicroseconds(70);
break;
case I2C_READ:
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
break;
case I2C_READ_CONTINUOUSLY:
if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
// too many queries, just ignore
Firmata.sendString("too many I2C queries");
break;
}
if (argc == 6) {
// a slave register is specified
slaveRegister = argv[2] + (argv[3] << 7);
data = argv[4] + (argv[5] << 7); // bytes to read
}
else {
// a slave register is NOT specified
slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
data = argv[2] + (argv[3] << 7); // bytes to read
}
queryIndex++;
query[queryIndex].addr = slaveAddress;
query[queryIndex].reg = slaveRegister;
query[queryIndex].bytes = data;
query[queryIndex].stopTX = stopTX;
break;
case I2C_STOP_READING:
byte queryIndexToSkip;
// if read continuous mode is enabled for only 1 i2c device, disable
// read continuous reporting for that device
if (queryIndex <= 0) {
queryIndex = -1;
} else {
queryIndexToSkip = 0;
// if read continuous mode is enabled for multiple devices,
// determine which device to stop reading and remove it's data from
// the array, shifiting other array data to fill the space
for (byte i = 0; i < queryIndex + 1; i++) {
if (query[i].addr == slaveAddress) {
queryIndexToSkip = i;
break;
}
}
for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
if (i < I2C_MAX_QUERIES) {
query[i].addr = query[i + 1].addr;
query[i].reg = query[i + 1].reg;
query[i].bytes = query[i + 1].bytes;
query[i].stopTX = query[i + 1].stopTX;
}
}
queryIndex--;
}
break;
default:
break;
}
break;
case I2C_CONFIG:
delayTime = (argv[0] + (argv[1] << 7));
if (delayTime > 0) {
i2cReadDelayTime = delayTime;
}
if (!isI2CEnabled) {
enableI2CPins();
}
break;
case SERVO_CONFIG:
if (argc > 4) {
// these vars are here for clarity, they'll optimized away by the compiler
byte pin = argv[0];
int minPulse = argv[1] + (argv[2] << 7);
int maxPulse = argv[3] + (argv[4] << 7);
if (IS_PIN_DIGITAL(pin)) {
if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
detachServo(pin);
}
attachServo(pin, minPulse, maxPulse);
setPinModeCallback(pin, PIN_MODE_SERVO);
}
}
break;
case SAMPLING_INTERVAL:
if (argc > 1) {
samplingInterval = argv[0] + (argv[1] << 7);
if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
samplingInterval = MINIMUM_SAMPLING_INTERVAL;
}
} else {
//Firmata.sendString("Not enough data");
}
break;
case EXTENDED_ANALOG:
if (argc > 1) {
int val = argv[1];
if (argc > 2) val |= (argv[2] << 7);
if (argc > 3) val |= (argv[3] << 14);
analogWriteCallback(argv[0], val);
}
break;
case CAPABILITY_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(CAPABILITY_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_DIGITAL(pin)) {
Firmata.write((byte)INPUT);
Firmata.write(1);
Firmata.write((byte)PIN_MODE_PULLUP);
Firmata.write(1);
Firmata.write((byte)OUTPUT);
Firmata.write(1);
}
if (IS_PIN_ANALOG(pin)) {
Firmata.write(PIN_MODE_ANALOG);
Firmata.write(10); // 10 = 10-bit resolution
}
if (IS_PIN_PWM(pin)) {
Firmata.write(PIN_MODE_PWM);
Firmata.write(8); // 8 = 8-bit resolution
}
if (IS_PIN_DIGITAL(pin)) {
Firmata.write(PIN_MODE_SERVO);
Firmata.write(14);
}
if (IS_PIN_I2C(pin)) {
Firmata.write(PIN_MODE_I2C);
Firmata.write(1); // TODO: could assign a number to map to SCL or SDA
}
Firmata.write(127);
}
Firmata.write(END_SYSEX);
break;
case PIN_STATE_QUERY:
if (argc > 0) {
byte pin = argv[0];
Firmata.write(START_SYSEX);
Firmata.write(PIN_STATE_RESPONSE);
Firmata.write(pin);
if (pin < TOTAL_PINS) {
Firmata.write((byte)pinConfig[pin]);
Firmata.write((byte)pinState[pin] & 0x7F);
if (pinState[pin] & 0xFF80) Firmata.write((byte)(pinState[pin] >> 7) & 0x7F);
if (pinState[pin] & 0xC000) Firmata.write((byte)(pinState[pin] >> 14) & 0x7F);
}
Firmata.write(END_SYSEX);
}
break;
case ANALOG_MAPPING_QUERY:
Firmata.write(START_SYSEX);
Firmata.write(ANALOG_MAPPING_RESPONSE);
for (byte pin = 0; pin < TOTAL_PINS; pin++) {
Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
}
Firmata.write(END_SYSEX);
break;
case SERIAL_MESSAGE:
Stream * serialPort;
mode = argv[0] & SERIAL_MODE_MASK;
byte portId = argv[0] & SERIAL_PORT_ID_MASK;
switch (mode) {
case SERIAL_CONFIG:
{
long baud = (long)argv[1] | ((long)argv[2] << 7) | ((long)argv[3] << 14);
byte swTxPin, swRxPin;
serial_pins pins;
if (portId < 8) {
serialPort = getPortFromId(portId);
if (serialPort != NULL) {
pins = getSerialPinNumbers(portId);
if (pins.rx != 0 && pins.tx != 0) {
setPinModeCallback(pins.rx, PIN_MODE_SERIAL);
setPinModeCallback(pins.tx, PIN_MODE_SERIAL);
// Fixes an issue where some serial devices would not work properly with Arduino Due
// because all Arduino pins are set to OUTPUT by default in StandardFirmata.
pinMode(pins.rx, INPUT);
}
((HardwareSerial*)serialPort)->begin(baud);
}
} else {
#if defined(SoftwareSerial_h)
if (argc > 4) {
swRxPin = argv[4];
swTxPin = argv[5];
} else {
// RX and TX pins must be specified when using SW serial
Firmata.sendString("Specify serial RX and TX pins");
return;
}
switch (portId) {
case SW_SERIAL0:
if (swSerial0 == NULL) {
swSerial0 = new SoftwareSerial(swRxPin, swTxPin);
}
break;
case SW_SERIAL1:
if (swSerial1 == NULL) {
swSerial1 = new SoftwareSerial(swRxPin, swTxPin);
}
break;
case SW_SERIAL2:
if (swSerial2 == NULL) {
swSerial2 = new SoftwareSerial(swRxPin, swTxPin);
}
break;
case SW_SERIAL3:
if (swSerial3 == NULL) {
swSerial3 = new SoftwareSerial(swRxPin, swTxPin);
}
break;
}
serialPort = getPortFromId(portId);
if (serialPort != NULL) {
setPinModeCallback(swRxPin, PIN_MODE_SERIAL);
setPinModeCallback(swTxPin, PIN_MODE_SERIAL);
((SoftwareSerial*)serialPort)->begin(baud);
}
#endif
}
break; // SERIAL_CONFIG
}
case SERIAL_WRITE:
{
byte data;
serialPort = getPortFromId(portId);
if (serialPort == NULL) {
break;
}
for (byte i = 1; i < argc; i += 2) {
data = argv[i] + (argv[i + 1] << 7);
serialPort->write(data);
}
break; // SERIAL_WRITE
}
case SERIAL_READ:
if (argv[1] == SERIAL_READ_CONTINUOUSLY) {
if (serialIndex + 1 >= MAX_SERIAL_PORTS) {
break;
}
if (argc > 2) {
// maximum number of bytes to read from buffer per iteration of loop()
serialBytesToRead[portId] = (int)argv[2] | ((int)argv[3] << 7);
} else {
// read all available bytes per iteration of loop()
serialBytesToRead[portId] = 0;
}
serialIndex++;
reportSerial[serialIndex] = portId;
} else if (argv[1] == SERIAL_STOP_READING) {
byte serialIndexToSkip = 0;
if (serialIndex <= 0) {
serialIndex = -1;
} else {
for (byte i = 0; i < serialIndex + 1; i++) {
if (reportSerial[i] == portId) {
serialIndexToSkip = i;
break;
}
}
// shift elements over to fill space left by removed element
for (byte i = serialIndexToSkip; i < serialIndex + 1; i++) {
if (i < MAX_SERIAL_PORTS) {
reportSerial[i] = reportSerial[i + 1];
}
}
serialIndex--;
}
}
break; // SERIAL_READ
case SERIAL_CLOSE:
serialPort = getPortFromId(portId);
if (serialPort != NULL) {
if (portId < 8) {
((HardwareSerial*)serialPort)->end();
} else {
#if defined(SoftwareSerial_h)
((SoftwareSerial*)serialPort)->end();
if (serialPort != NULL) {
free(serialPort);
serialPort = NULL;
}
#endif
}
}
break; // SERIAL_CLOSE
case SERIAL_FLUSH:
serialPort = getPortFromId(portId);
if (serialPort != NULL) {
getPortFromId(portId)->flush();
}
break; // SERIAL_FLUSH
#if defined(SoftwareSerial_h)
case SERIAL_LISTEN:
// can only call listen() on software serial ports
if (portId > 7) {
serialPort = getPortFromId(portId);
if (serialPort != NULL) {
((SoftwareSerial*)serialPort)->listen();
}
}
break; // SERIAL_LISTEN
#endif
}
break;
}
}
void enableI2CPins()
{
byte i;
// is there a faster way to do this? would probaby require importing
// Arduino.h to get SCL and SDA pins
for (i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_I2C(i)) {
// mark pins as i2c so they are ignore in non i2c data requests
setPinModeCallback(i, PIN_MODE_I2C);
}
}
isI2CEnabled = true;
Wire.begin();
}
/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
isI2CEnabled = false;
// disable read continuous mode for all devices
queryIndex = -1;
}
/*==============================================================================
* SETUP()
*============================================================================*/
void systemResetCallback()
{
Stream *serialPort;
isResetting = true;
// initialize a defalt state
// TODO: option to load config from EEPROM instead of default
if (isI2CEnabled) {
disableI2CPins();
}
#if defined(SoftwareSerial_h)
// free memory allocated for SoftwareSerial ports
for (byte i = SW_SERIAL0; i < SW_SERIAL3 + 1; i++) {
serialPort = getPortFromId(i);
if (serialPort != NULL) {
free(serialPort);
serialPort = NULL;
}
}
#endif
serialIndex = -1;
for (byte i = 0; i < SERIAL_READ_ARR_LEN; i++) {
serialBytesToRead[i] = 0;
}
for (byte i = 0; i < TOTAL_PORTS; i++) {
reportPINs[i] = false; // by default, reporting off
portConfigInputs[i] = 0; // until activated
previousPINs[i] = 0;
}
for (byte i = 0; i < TOTAL_PINS; i++) {
// pins with analog capability default to analog input
// otherwise, pins default to digital output
if (IS_PIN_ANALOG(i)) {
// turns off pullup, configures everything
setPinModeCallback(i, PIN_MODE_ANALOG);
} else if (IS_PIN_DIGITAL(i)) {
// sets the output to 0, configures portConfigInputs
setPinModeCallback(i, OUTPUT);
}
servoPinMap[i] = 255;
}
// by default, do not report any analog inputs
analogInputsToReport = 0;
detachedServoCount = 0;
servoCount = 0;
/* send digital inputs to set the initial state on the host computer,
* since once in the loop(), this firmware will only send on change */
/*
TODO: this can never execute, since no pins default to digital input
but it will be needed when/if we support EEPROM stored config
for (byte i=0; i < TOTAL_PORTS; i++) {
outputPort(i, readPort(i, portConfigInputs[i]), true);
}
*/
isResetting = false;
}
void setup()
{
DEBUG_BEGIN(9600);
#ifdef local_ip
Ethernet.begin((uint8_t *)mac, local_ip); //start ethernet
#else
Ethernet.begin((uint8_t *)mac); //start ethernet using dhcp
#endif
DEBUG_PRINTLN("connecting...");
Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);
// StandardFirmataEthernet communicates with Ethernet shields over SPI. Therefor all
// SPI pins must be set to IGNORE. Otherwise Firmata would break SPI communication.
// add Pin 10 and configure pin 53 as output if using a MEGA with an Ethernet shield.
// ignore SPI and pin 4 that is SS for SD-Card on Ethernet-shield
for (byte i = 0; i < TOTAL_PINS; i++) {
if (IS_PIN_SPI(i)
|| 4 == i // SD-Card on Ethernet-shiedl uses pin 4 for SS
|| 10 == i // Ethernet-shield uses pin 10 for SS
) {
pinConfig[i] = PIN_MODE_IGNORE;
}
}
// Arduino EthernetShield has SD SS wired to D4
pinMode(PIN_TO_DIGITAL(4), OUTPUT); // switch off SD card bypassing Firmata
digitalWrite(PIN_TO_DIGITAL(4), HIGH); // SS is active low;
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
pinMode(PIN_TO_DIGITAL(53), OUTPUT); // configure hardware SS as output on MEGA
#endif
// start up Network Firmata:
Firmata.begin(stream);
systemResetCallback(); // reset to default config
}
/*==============================================================================
* LOOP()
*============================================================================*/
void loop()
{
byte pin, analogPin;
/* DIGITALREAD - as fast as possible, check for changes and output them to the
* Stream buffer using Stream.write() */
checkDigitalInputs();
/* STREAMREAD - processing incoming messagse as soon as possible, while still
* checking digital inputs. */
while (Firmata.available())
Firmata.processInput();
// TODO - ensure that Stream buffer doesn't go over 60 bytes
currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval) {
previousMillis += samplingInterval;
/* ANALOGREAD - do all analogReads() at the configured sampling interval */
for (pin = 0; pin < TOTAL_PINS; pin++) {
if (IS_PIN_ANALOG(pin) && pinConfig[pin] == PIN_MODE_ANALOG) {
analogPin = PIN_TO_ANALOG(pin);
if (analogInputsToReport & (1 << analogPin)) {
Firmata.sendAnalog(analogPin, analogRead(analogPin));
}
}
}
// report i2c data for all device with read continuous mode enabled
if (queryIndex > -1) {
for (byte i = 0; i < queryIndex + 1; i++) {
readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
}
}
}
checkSerial();
#if !defined local_ip
if (Ethernet.maintain())
{
stream.maintain(Ethernet.localIP());
}
#endif
}